首页 > 以车会友 > 以车会友 > 多模态对齐在小红书推荐的研究及应用

多模态对齐在小红书推荐的研究及应用

发布时间:2024-09-24 16:52:42来源: 13041198719

在 CIKM 2024 上,小红书中台算法团队提出了一种创新的联合训练框架 AlignRec,用于对齐多模态表征学习模型和个性化推荐模型。本文指出,由于多模态模型与推荐模型在训练过程中存在步调不一致问题,导致联合训练被推荐信号主导,从而丢失大量多模态信息。AlignRec 通过分阶段对齐的方式,设计了三种针对性的优化损失函数,使得联合训练能够同时兼顾多模态信息和推荐信息。实验结果表明,AlignRec 在多个数据集上的性能超过了现有的 SOTA(state-of-the-art)模型。此外,AlignRec 还提供了在当前广泛使用的公开数据集亚马逊上的预处理特征,这些特征的效果显著优于现有的开源特征。


最近多模态是个非常热门的话题,尤其是在大模型以及 AIGC 领域,多模态基建和技术是走向未来商业化的奠基石。在过去的多模态大模型研究方向上,模态的“对齐”已经被验证非常重要,分布的不一致损害不同模态的理解,我们此次要讨论的核心问题是多模态在推荐中的对齐问题;

 

在具体介绍论文工作之前,我们先来介绍下我们过去在推荐和电商中的实践工作:

 

推荐实践


上述方法是我们对 BM3论文进行改进 上线的方案,该方案实际上做的是通过损失函数来实现“对齐”工作。我们的对模型的期望也是保留个性化的同时,能够对齐行为和多模态的空间,进一步增加长尾的个性化分发能力。先说效果:

 

该模型实验在推荐发现页取得时长、曝光、点击等核心指标收益,除此之外,在长尾分发上,0 粉作者笔记点击和曝光获得大幅增长,整个召回路增加了全局可分发笔记数 6%,分发笔记集中在 1k-5k 的笔记曝光集合;同时,我们的方法也被复用在了电商场景,分发长尾同时,获得 DGMV 等核心指标收益。

 

很显然,从上述可以看出,“对齐”的效果立竿见影,在业界应用上我们已经取得实质性进展,但本质上这样的设计方案依然并没有完全解决多模态推荐问题,因为我们的多模态模型和推荐模型是相对割裂的,等同于直接拿表征来使用,这样的设计打通了应用范式,却无法判断多模态模型本身能力对效果的上限,对于选择合适多模态表征存在一定的难度。但如果我们引入文本/图等 Encoder(Transformer)等进行联合训练,会引入如下的问题:

 

在大规模的数据下,分布式训练引入图文 Encoder 会造成资源和性能问题,尤其是注重高时效性的 Streaming Data;
训练步调不一致,往往多模态模型需要大量数据甚至多个 Epoch 才能收敛,但推荐模型通常采取单轮训练,这也导致多模态模型训练不充分;

所以我们设计联合训练模型,通过设计分阶段对齐的方式和中间指标评估,解决上述联合训练问题,并且引入了三种针对性的优化损失函数,使得联合训练能够同时兼顾多模态信息和推荐信息,解决联合训练中的“对齐”问题,提升效果上限。

 

下面我们从相关工作,核心挑战,模型设计介绍整体工作。

 

我们在这里通过 (a), (b), (c) 描述了在过往的学术界目前多模态推荐方向的相关工作,总结主要的发展路径:

图(a),直接利用,比如把 embedding,多模态特征作为信号输入网络;
图(b),利用图等方式聚合,希望能得到更丰富的多模态信息表达,这本质上也是增加多模态侧信息的召回率;
图(c),联合优化,把模态损失和行为损失共同优化,但这忽略了本身笔记侧的多模态学习。
在工业界,现阶段推荐系统主要还是依赖于 ID 特征的学习, 大多数多模态推荐把多模态信息作为 sideinfo 去辅助 ID 特征的学习。但是, 多模态之间以及 ID 模型与多模态之间都存在着语义鸿沟, 直接使用甚至可能适得其反。

 

核心挑战

为了贴合业界实际,设计一款有效的多模态与推荐联合训练模型会遇到如下的挑战:

 

挑战1: 如何对齐多模态表征。包括内容模态之间(如图文)的对齐,以及内容模态与 ID 模态之间的对齐;
挑战2: 如何平衡好内容模态和 ID 模态之间的学习速度问题。内容模态可能需要超大规模的数据和时间去训练, 而 ID 模态的学习更新可能只需要几个 epoch。
挑战3: 如何评估多模态特征对推荐系统的影响。引入不合适的多模态信息可能需要更多的精力去做纠正, 甚至可能影响推荐系统的性能。

我们所提出的方法命名为 AlignRec,整体框架如下图所示, 主要包含3个模块: Multimodal Encoder Module, Aggregation Module, 以及 Fusion Module, 下面分别进行介绍。


Multimodal Encoder Module

 

以车会友更多>>

2024年佛山市禅城区国有资产监督管理局下属企业招聘工作人员公告(2人) 2024年“惠”聚优才——惠城区高新园招聘编外工作人员通告(4人) 2024年潮州市卫生健康局直属医疗机构赴广东医科大学招聘工作人员公告 2024年台州温岭市交通旅游集团有限公司招聘编外工作人员公告 联想即将发布moto新千元机,4nm芯+光学防抖+IP68,AI功能强大 《索尼中国可持续发展报告2024》在第七届进博会上发布 红米Note14Pro+和红米Turbo3哪个好?我们应该怎么选? 红米note系列、k系列,到底哪个系列更值得买? 红米“不讲武德”,Note13Pro+跌落神坛,1819供不应求 国外科技媒体评测小米15:目前最好的小屏旗舰手机 小米15系列销量火爆!卢伟冰直播透露首销佳绩及小米之家扩展计划 华为新手机设置这六个更流畅,这些设置让你的手机飞起来 OPPO“不讲武德”,抗摔直屏+5500mAh+100W,512GB跌至1581元 迈腾 B9,是否值得你的倾心? 1-9月紧凑型轿车销量榜单变天了 七款国产轿车进前十 轩逸第二 苹果发布 iOS 18.1 RC 版,正式版下周见 安卓15来了!谷歌放大招,手机刷新率玩起了\"变脸\"游戏 华为余承东:鸿蒙智行正式发布一周年,累计交付突破50万辆 vivo X200、X200 Pro、X200 Pro mini参数大比拼,你更喜欢哪一款 VIVO“不讲武德”,X100SPro跌落神坛,成双11黑马! 荣耀“不讲武德”,200系列跌落神坛,1999供不应求 5299元一加13开箱体验,为什么说是最均衡的国产旗舰手机? 各品牌手机多少钱入手最合算?请看本篇双十一全品牌手机抄底攻略 手机买对不买贵,这3款堪称“捡漏”,一步到位能用6年 盘点双11旗舰机价格跳水王:2024双十一手机高性价比推荐排行榜 BC阵营大合体!爱旭、隆基、TCL中环要在珠海搞点事? TCL智能锁体验怎么样?K7G Plus用了一段时间后,有些话不吐不快 索尼PSN港服迎“双十一”游戏折扣活动 红米K80系列和iQOO Neo10系列哪款手机更值得购买? 120倍变焦!真我GT7Pro首销3599元起,影像体验如何?